
Set 8:

Inference in First-order logic

ICS 271 Fall 2013

Chapter 9: Russell and Norvig





Universal instantiation (UI)

• Every instantiation of a universally quantified sentence is entailed by it:

v α

Subst({v/g}, α)

for any variable v and ground term g

• E.g., x King(x)  Greedy(x)  Evil(x) yields:

King(John)  Greedy(John)  Evil(John)

King(Richard)  Greedy(Richard)  Evil(Richard)

King(Father(John))  Greedy(Father(John))  Evil(Father(John))

Obtained by substituting {x/John}, {x/Richard} and {x/Father(John)}



Existential instantiation (EI)

• For any sentence α, variable v, and constant symbol k that does not
appear elsewhere in the knowledge base:

v α

Subst({v/k}, α)

• E.g., x Crown(x)  OnHead(x,John) yields:

Crown(C1)  OnHead(C1,John)

provided C1 is a new (not used so far) constant term, called a 
Skolem constant



Reduction to propositional inference

Suppose the KB contains just the following:

x King(x)  Greedy(x)  Evil(x)

King(John)

Greedy(John)

Brother(Richard,John)

• Instantiating the universal sentence in all possible ways, we have:
King(John)  Greedy(John)  Evil(John)

King(Richard)  Greedy(Richard)  Evil(Richard)

King(John)

Greedy(John)

Brother(Richard,John)

• The new KB is propositionalized: proposition symbols are

King(John), Greedy(John), Evil(John), King(Richard), etc.



Reduction contd.

• Every FOL KB can be propositionalized so as to preserve entailment

• (A ground sentence is entailed by new KB iff entailed by original KB)

• Idea: propositionalize KB and query, apply resolution, return result

• Problem: with function symbols, there are infinitely many ground 

terms,

– e.g., Father(Father(Father(John)))



Reduction contd.
Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB, it 

is entailed by a finite subset of the propositionalized KB

Idea: For n = 0 to ∞ do
create a propositional KB by instantiating with depth=n terms

see if α is entailed by this KB

Problem: works (will terminate) if α is entailed, loops forever if α is not 
entailed

Theorem: Turing (1936), Church (1936) Entailment for FOL is

semidecidable (algorithms exist that say yes to every entailed 
sentence, but no algorithm exists that also says no to every non-
entailed sentence.)



Problems with propositionalization

• Propositionalization seems to generate lots of irrelevant sentences.

• E.g., from:

x King(x)  Greedy(x)  Evil(x)

King(John)

y Greedy(y)

Brother(Richard,John)

• Given query “evil(x) it seems obvious that Evil(John), but 
propositionalization produces lots of facts such as Greedy(Richard) that are 
irrelevant

• With p k-ary predicates and n constants, there are p·nk instantiations.



Generalized Modus Ponens (GMP)

p1', p2', … , pn', ( p1  p2  …  pn q)

qθ

p1' is King(John)  p1 is King(x) 

p2' is Greedy(y)  p2 is Greedy(x) 

θ is {x/John,y/John} q is Evil(x) 

q θ is Evil(John)

• GMP used with KB of definite clauses (exactly one positive literal)

• All variables assumed universally quantified

where pi'θ = pi θ for all i



Soundness of GMP

• Need to show that 

p1', …, pn', (p1  …  pn  q) ╞ qθ

provided that pi'θ = piθ for all i

• Lemma: For any sentence p, we have p ╞ pθ by UI

1. (p1  …  pn  q) ╞ (p1  …  pn  q)θ = (p1θ  …  pnθ  qθ)

2. p1', ; …, ;pn' ╞ p1'  …  pn' ╞ p1'θ  …  pn'θ

3. From 1 and 2, qθ follows by ordinary Modus Ponens



Unification
• We can get the inference immediately if we can find a substitution θ

such that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ 

p q θ

Knows(John,x) Knows(John,Jane) 

Knows(John,x) Knows(y,OJ) 

Knows(John,x) Knows(y,Mother(y))

Knows(John,x) Knows(x,OJ) 

• Standardizing apart eliminates overlap of variables, e.g., 

Knows(z17,OJ)



Unification
• We can get the inference immediately if we can find a substitution θ

such that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ 

p q θ

Knows(John,x) Knows(John,Jane) {x/Jane}

Knows(John,x) Knows(y,OJ) 

Knows(John,x) Knows(y,Mother(y))

Knows(John,x) Knows(x,OJ) 

• Standardizing apart eliminates overlap of variables, e.g., 

Knows(z17,OJ)



Unification

• We can get the inference immediately if we can find a substitution θ such 

that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ 

p q θ

Knows(John,x) Knows(John,Jane) {x/Jane}

Knows(John,x) Knows(y,OJ) {x/OJ,y/John}

Knows(John,x) Knows(y,Mother(y))

Knows(John,x) Knows(x,OJ) 

• Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)



Unification

• We can get the inference immediately if we can find a substitution θ such 

that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ 

p q θ

Knows(John,x) Knows(John,Jane) {x/Jane}}

Knows(John,x) Knows(y,OJ) {x/OJ,y/John}}

Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}}

Knows(John,x) Knows(x,OJ) 

• Standardizing apart eliminates overlap of variables, e.g., Knows(z17,OJ)



Unification
• We can get the inference immediately if we can find a substitution θ

such that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} works

• Unify(α,β) = θ if αθ = βθ 

p q θ

Knows(John,x) Knows(John,Jane) {x/Jane}

Knows(John,x) Knows(y,OJ) {x/OJ,y/John}

Knows(John,x) Knows(y,Mother(y)) {y/John,x/Mother(John)}

Knows(John,x) Knows(x,OJ) 

• Standardizing apart eliminates overlap of variables, e.g., 

Knows(z17,OJ)



Unification

• To unify Knows(John,x) and Knows(y,z),
θ = {y/John, x/z } or θ = {y/John, x/John, z/John}

• The first unifier is more general than the second.

• There is a single most general unifier (MGU) that is 
unique up to renaming of variables.
MGU = { y/John, x/z }



The unification algorithm



The unification algorithm



Hard matching example

• Colorable() is inferred iff the CSP has a solution

• CSPs include 3SAT as a special case, hence 

matching is NP-hard

Diff(wa,nt)  Diff(wa,sa)  Diff(nt,q) 

Diff(nt,sa)  Diff(q,nsw)  Diff(q,sa) 

Diff(nsw,v)  Diff(nsw,sa)  Diff(v,sa) 
Colorable()

Diff(Red,Blue) Diff (Red,Green) 

Diff(Green,Red)  Diff(Green,Blue) 

Diff(Blue,Red) Diff(Blue,Green)



Summary so far
• Reduction by propositionalization

– Eliminate  and 

– Theorem: Herbrand (1930). If a sentence α is entailed by an FOL 

KB, it is entailed by a finite subset of the propositionalized KB

– With fn symbols infinitely many ground terms

– Semi-decidable

– Very slow in practice

• Generalized Modus Ponens

– Replace instantiation step with unification

• UNIFY(p,q)=θ where SUBST(θ,p)=SUBST(θ,q)

• Unification in general NP-hard

– Matching a definite clause against a set of facts is equivalent to 

solving a CSP

p1', p2', … , pn', ( p1  p2  …  pn q)
qθ

where pi'θ = pi θ for all i



Example knowledge base

• The law says that it is a crime for an American to sell 

weapons to hostile nations.  The country Nono, an 

enemy of America, has some missiles, and all of its 

missiles were sold to it by Colonel West, who is 

American.

• Prove that Col. West is a criminal



Example knowledge base, cont.
... it is a crime for an American to sell weapons to hostile nations:

American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)

Nono … has some missiles, i.e., x Owns(Nono,x)  Missile(x):
Owns(Nono,M1) and Missile(M1)

… all of its missiles were sold to it by Colonel West
Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)

Missiles are weapons:
Missile(x)  Weapon(x)

An enemy of America counts as "hostile“:
Enemy(x,America)  Hostile(x)

West, who is American …
American(West)

The country Nono, an enemy of America …
Enemy(Nono,America)



Forward chaining algorithm



Forward chaining proof



Forward chaining proof

Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)

Missile(x)  Weapon(x)

Enemy(x,America)  Hostile(x)



Forward chaining proof

American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)



Forward chaining proof

*American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)

*Owns(Nono,M1) and Missile(M1)

*Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)

*Missile(x)  Weapon(x)

*Enemy(x,America)  Hostile(x)

*American(West)

*Enemy(Nono,America)



Properties of forward chaining

• Sound and complete for first-order definite clauses

• Datalog = first-order definite clauses + no functions

– FC terminates for Datalog in finite number of iterations (p∙nk

grounds terms)

• May not terminate in general if α is not entailed

• This is unavoidable: entailment with definite clauses is 

semidecidable

• Query complexity vs. data complexity

• Forward chaining is widely used in deductive databases



• Pattern matching itself can be expensive: 

– Use indexing to unify sentences that have a chance of unifying

• Knows(x,y) vs Brother(u,v)

– Database indexing allows O(1) retrieval of known facts

– e.g., query Missile(x) retrieves Missile(M1)

Efficiency of forward chaining

p1', p2', … , pn', ( p1  p2  …  pn q)
qθ

where pi'θ = pi θ for all i



Efficiency of forward chaining

• Matching rules against known facts

Conjunct ordering problem

Missile(x) ˄ Owns(Nono,x)  Sells(West, x, Nono)

NP-hard in general, but can use heuristics used for CSPs

Rule-matching tractable when CSP is tractable

p1', p2', … , pn', ( p1  p2  …  pn q)
qθ

where pi'θ = pi θ for all i



Efficiency of forward chaining

1. Incremental forward chaining: no need to match a rule on 
iteration k if a premise wasn't added on iteration k-1

match each rule whose premise contains a newly 
added positive literal

2. Retain partial matches and complete them incrementally 
as new facts arrive



Efficiency of forward chaining

Forward chaining infers everything, most of which can be 
irrelevant to the goal

– Solution : allow only those bindings that are relevant to the goal

• Use generic backward chaining

– Add Magic(x) extra conjunct to rules and Magic(c) to the KB

• E.g. Magic(West)



Backward chaining example



Backward chaining example



Backward chaining example



Backward chaining example



Backward chaining example



Backward chaining example



Backward chaining example



Backward chaining algorithm

SUBST(COMPOSE(θ1, θ2), p) = SUBST(θ2, SUBST(θ1, p))



Properties of backward chaining

• Depth-first recursive proof search: space is linear in size of proof

– But not in size of data (bindings)

• Incomplete due to infinite loops

– fix by checking current goal against every goal on stack

• Inefficient due to repeated subgoals (both success and failure)

– fix using caching of previous results (extra space)

• Widely used for logic programming (Prolog)



Prolog

• Appending two lists to produce a third:

append([],Y,Y).                         

append([X|L],Y,[X|Z]) :- append(L,Y,Z). 

• query:   append(A,B,[1,2]) ?

• answers: A=[]    B=[1,2]

A=[1]   B=[2]

A=[1,2] B=[]



Logic programming: Prolog
• Algorithm = Logic + Control

• Basis: backward chaining with Horn clauses + bells & whistles

Widely used in Europe, Japan (basis of 5th Generation project)

Compilation techniques  60 million LIPS

• Program = set of clauses = head :- literal1, … literaln.
criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).

• Depth-first, left-to-right (within rule), top-down (within rule-set) backward chaining

• Built-in predicates for arithmetic etc., e.g., X is Y*Z+3

• Built-in predicates that have side effects (e.g., input and output predicates, assert/retract 
predicates)

• No occurs-check in unification – may produce results not entailed

• No checks for infinite loops – incomplete even for definite clauses

• Prolog : no caching; Tabled Logic Programming : memoization

• Database semantics :
– Unique names assumption

– Closed-world assumption ("negation as failure")

• e.g., given alive(X) :- not dead(X).

• alive(joe) succeeds if dead(joe) fails



Resolution: brief summary

• Full first-order version:

l1  ···  lk,          m1  ···  mn

(l1  ···  li-1  li+1  ···  lk  m1  ···  mj-1  mj+1  ···  mn)θ

where Unify(li, mj) = θ.

• The two clauses are assumed to be standardized apart so that they share no variables.

• For example,

Rich(x)  Unhappy(x)                Rich(Ken)

Unhappy(Ken)

with θ = {x/Ken}

• Apply resolution steps to CNF(KB  α); complete (with factoring) for FOL



Conversion to CNF

• Everyone who loves all animals is loved by someone:
x [y Animal(y)  Loves(x,y)]  [y Loves(y,x)]

• 1. Eliminate biconditionals and implications
x [y Animal(y)  Loves(x,y)]  [y Loves(y,x)]

• 2. Move  inwards: x p ≡ x p,   x p ≡ x p
x [y (Animal(y)  Loves(x,y))]  [y Loves(y,x)] 

x [y Animal(y)  Loves(x,y)]  [y Loves(y,x)] 

x [y Animal(y)  Loves(x,y)]  [y Loves(y,x)] 



Conversion to CNF contd.

• 3. Standardize variables: each quantifier should use a different one

x [y Animal(y)  Loves(x,y)]  [z Loves(z,x)]

• 4. Skolemize: a more general form of existential instantiation.

Each existential variable is replaced by a Skolem function of the enclosing universally quantified 
variables:

x [Animal(F(x))  Loves(x,F(x))]  Loves(G(x),x)

• 5. Drop universal quantifiers:

[Animal(F(x))  Loves(x,F(x))]   Loves(G(x),x)

• 6. Distribute  over  :

[Animal(F(x))  Loves(G(x),x)]  [Loves(x,F(x))  Loves(G(x),x)]



Example knowledge base contd.
... it is a crime for an American to sell weapons to hostile nations:

American(x)  Weapon(y)  Sells(x,y,z)  Hostile(z)  Criminal(x)

Nono … has some missiles, i.e., x Owns(Nono,x)  Missile(x):
Owns(Nono,M1) and Missile(M1)

… all of its missiles were sold to it by Colonel West
Missile(x)  Owns(Nono,x)  Sells(West,x,Nono)

Missiles are weapons:
Missile(x)  Weapon(x)

An enemy of America counts as "hostile“:
Enemy(x,America)  Hostile(x)

West, who is American …
American(West)

The country Nono, an enemy of America …
Enemy(Nono,America)



Resolution proof: definite clauses



Efficient Resolution

• Resolution proofs can be long

• Strategies :

– Unit Preference

– Set of support

– Input resolution

• Complete for Horn clauses

– Linear Resolution

• Complete in general



Converting  to clause form

(Try this example)

),(

)27,(

)28,()27,(

)(),(

),()28,()27,()()( ,

ABS

BI

AIAI

BPAP

yxSyIxIyPxPyx







Prove I(A,27)



Example: Resolution 

Refutation Prove  I(A,27)



Example: Answer Extraction


